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CALIBRATION FOR INSTRUMENTAL
SPREADING IN SIZE EXCLUSION CHROMATO-
GRAPHY BY A NOVEL RECYCLE TECHNIQUE

D. Alba and G. R. Meira*

INTEC (CONICET and Universidad Nac.del Littoral)
C. C. 91, Santa Fe (3000), Argentina

ABSTRACT

So far, the best available techniques for the instrumen-
tal spreading calibration in size exclusion chromatography (SEC)
provide the first moments of the spreading function, and require
the measurement of several recycles. This work presents a method
that enables the calculation of the spreading, making no "a
priori” assumptions with regards to its shape, from the informa-
tion contained in the original and first recycle chromatograms of
a narrowly distributed standard only. Then, the corrected chroma-
togram may be obtained. The technique 1s tested on experimental

data.

INTRODUCTION

In order to correct chromatograms obtained in SEC (or
hydrodynamic chromatography) for instrumental broadening, the fol-

lowing integral equation due to Tung [1] is employed:

(*) To whom correspondence should be sent
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4o
z(t) = [ g(t,1) u(r) dr (D

—00

where t,T : represent the elution time or the elution volume;
z(t) : is the measured chromatogram;
g(t,t) : is the time-varying, non-uniform or non-stationary
spreading function; and

u(t) : is the corrected chromatogram.

For a fixed t=r), a function g(t,rl) of one independent
variable 1is obtained. The retention time 1) represents the
idealized elution time of the impulsive chromatogram that would be
produced 1f a truly monodisperse polymer were injected into a
chromatograph without spreading. Also g(t,t;) 1s the theoretical
chromatogram that would be obtaiﬂed if that same truly monodis-—

perse polymer were injected into a real instrument with spreading.

If u(t) = 8(t-ty), then z(t) = g(t,1]). In other words,
g(t,t) may be considered the non-causal response to a unit im-
pulse applied at t=t]. For this reason, the measured chromatogram
z(t) in eqn (1) may be thought of as the result of the process of
injecting the signal u(t) into a time-varying linear filter

characterized by the set of impulse responses g(t,T).

When the spreading may be assumed time-invariant, uni-
form or stationary (for example, because a narrowly distributed

polymer is being analyzed), then

g(t,t) = gl(t-),0] (2)
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For notational convenience, we shall drop the indication of when

the impulse is applied, and shall define the uniform spreading as:

g(t) = g(t,0) (3

Thus, eqn (1) reduces to the convolution integral:
oo
z(t) = [ g(t=t) u(r) dr (4)
-—C0
The convolution of two signals g(t) and u(t) may be also repre-
sented symbolically as:

z(t) = g(t) x u(t) (5)

Several methods have been proposed to find u(t) based on
the measured chromatogram and the spreading function. For example:
[1] to [4] solve the deconvolution problem of eqns (4) and (5),
while in [5] to [7] the more general inverse filtering operation

of eqn (1) is considered.

With the exception of some blopolymers, truly monodis-
perse synthetic polymers are impossible to obtain. For this rea-
son, the problem of calibration for instrumental broadening is not
trivial. Note that even if truly monodisperse polymers were avail-
able, the corresponding retention time T would be still indeter-
mined. For this reason, it will be necessary to specify 1 at some
retention time in the elution time range covered by the chroma-

togram z(t).

Like in all previously reported methods, the technique

that 1is proposed in this paper makes the basic assumption that
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g(t,t) is uniform in the range of elution times covered by z(t).

In a real situation, this hypothesis will be verified only 1if the
molecular weight distribution of the analyzed polymer is very
narrow. In this work, we shall reserve the symbol g(t) to repre-
sent the spreading of a strictly uniform system, i.e., uniform in
all the elution range covered by the given set of columns. Also,
we shall call h(t) the uniform spreading valid in a certain inter-

val [11*,11*] around the corresponding associated retention time

11+ In this manner,
g(t,7) = h(ttr) Vv 1 ¢ [11*,11*] (6)
Clearly, if the system 18 strictly uniform, then:
g{t,T) = h(t) v 1 €))

The existing techniques for the determination of h(t)

may be classified as follows:

1) Methods that assume narrowly distributed standards to be

monodisperse (see [8]);

i1) Methods which employ standards of known molecular weight dis-

tribution (see [9]);
iii) Reverse flow techniques, e.g.: [10, 11]}; and
iv) Recycle techniques, e.g.: [12] to [15].

The recycle techniques seem the most promising both from

the experimental and the theoretical viewpoint. The first publica-
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tion [12], allowed the calculation of the second moments of h(t)
and u(t), but did not take into account the spreading due to the
pump. An improvement to [12] 1is presented in [15], where the pump
spreading and the calculation of up to the third moments of h(t)
and u(t) are considered. The main limitations of that approach
are, however, that the true shapes of h(t) and u(t) are not direct
ly obtained, and that the measurement of several recycles is re-

quired.

This paper proposes a method which permits the determi-
nation of h(t) and u(t), without any "a priori” assumption with
regards to their shapes. The method involves the injection of a
narrowly distributed polymer. The required measurements are the
original and first recycle chromatograms, obtained under the fol-
lowing conditions: when the instrument has columns, and when it is

operated without the columns,

THEORY

Fig 1 shows the chromatograph configuration that is nec-
essary for the application of a recycle technique. In recycle
mode, the three way valve A is switched to the lower position, so

that the detector effluent may be refed into the system.

The ideal pure fractionation model

In the 1deal situation, the free volumes in the injec-

tor, the tubings, the detector and the pump are all infinitely
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--Solvent =~ Injector

————o0——o0—]P !
A umpW

To waste

FIGURE 1: Required chromatograph configuration for the operation
in recycle mode.

small; only pure fractionation 1s present; and no instrumental
broadening occurs. Under such circumstances, the elution time for
a particular molecular species in the ideal first recycle chroma-
togram without spreading u (t) must exactly double the correspond-
ing elution time in the ideal original chromatogram u(t). Also,
the area under u(t) is the same as that under u,(t), because the
total sample mass is constant, For the above reasons, the rela-

tionship between u(t) and u,(t) may be represented as follows:
1 t
up(t) = = (= (8)
(o) = Ludy

Model with spreading

Call hyq(t) the spreading due to the finite injection
volume and to the broadening produced in the injector, in the
detector,‘ and in the piping between injector and detector. Let
ho(t) be the spreading due to the columns alone. The total spread-

ing h(t) 1s obtained by superposition of these two effects, if.e.:
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h(t) = hq(t) » h(t) (9

If one assumes that no fractionation is produced outside
the columns, then save a time shift, the chromatogram f(t) obtain-
ed with the instrument without the columns 1is representative of

hq(t); i.e.:
hg(t) = £(t+8) (10)
where 6 is the retention time associated to f(t).

When the recycle mode 1is utilized, then the important
spreading due to the pump hp(t) must also be considered. Denoting
with f (t) the first recycle chromatogram produced without the

columns, one has:
fr(t+0)) = hp(t) » hg(t) & hg(t) (11)

where 6] 1s the retention time associated to f.(t). Replacing eqn

(10) into eqn (11), one obtains:
£r(t481) = hp(t) » £(t+8) & f(t+6) (12)

Thus, the pump spreading may be found through a double deconvolu-

tion of f (t) with f(t).

Assume now that the chromatograph 1s fit with the
columns, that a narrow polymer is injected, and that the original
chromatogram z(t) and its first recycle z,.(t) are available. In

this case,
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z(t) h(t) % u(t) 13

zp(t) = h(t) % h(t) » hp(t) * ur(t) (14)

If hp(t) is obtained as explained before, then this spreading may
be "extracted" from eqn (14). Call z.(t) the resultant of decon-

volving z,(t) with hp(t), i.e.:
zp(t) = zo(£) % hp(t) (15)

In a real situation, in addition to the pure spreading without
translation, a time delay d will appear in relation to the trans-—
fer of each molecular species through the pump and recycle tubing.

Taking this last effect into account, eqn (8) may be rewritten as:

% u(%] (16)

up(tHd) =
and from eqns (14) to (16) one obtains:

ze(t+d) = h(t) % h(t) » [% u(%)] an

In what follows, the time delay d may be neglected without loss of
generality. Thus, consider the Fourier transform of eqn (13), and

of eqn (17) with d=0:

Z(w) H(w) U(w) (18)

Zo(w) = HZ(w) U(2w) (19)

where w 1is the frequency in the transform domain. Eqn (19)

provides:
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zc(gj = n2(§) U(w) (20)

Dividing eqn (18) by eqn (20) one obtains:

Zw) . HG) (21)
e ® T wr
Define:
B(w) = 2(73) (22)
€2
Eqn (22) is equivalent to:
2(£) = b(t) * [2 zg (26)] (23)

where b(t) is the time domain counterpart of B(w). B(w) may be
calculated directly in the frequency domain through eqn (22).
Alternatively, B(w) may be obtained by antitransformation of b(t),
in turn obtained through eqn (23) by a double deconvolution of

z(t) with a scaled version of z.(t).
From eqns (21) and (22) one has:
H(w) = B(w) HZ(-;i] (24)

The calibration problem would be solved if H(w) could be calcu-
lated through the non-linear functional eqn (24), from the knowl-
edge of B(w) only. This problem will be analyzed in a following
section. Note finally that if h(t) 1is known, then u(t) can be
calculated through:

+o0
z(t) = [ h(t-t) u(t) dr (25)
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The basic characteristics of b(t) and B(w)

Consider some conditions that must be verified by B(w)
and b(t). Note first that since the areas under z(t) and z.(t) are

equal, then Z(0) = Z.(0). Therefore, from eqn (22) one must have:
B(0) = 1 (26)

i.e., the area under b(t) 1is unity., Now differentiate eqn (24)

with respect to w. This gives:
HY(w) = B’(w)Hzfga + B(w) H(gq H'(EU (27)

Since H(0) = 1, bearing in mind eqn (26), and considering w = 0 in

eqn (27), then it follows that:
B'(0) = 0O (28)

For any transform pair x(t) <==> X(w), the k-th order moment of

x(t) defined by:

4o
m = [ tkx(t) dt (k = 0,1,2,...)  (29)

—00

may be calculated from:

a®u(w)

-1k m =
dwk | g

(30)

Thus, the mean value of b(t)that we shall call b, may be obtained

through:

(31)

i.e., b(t) has zero mean.
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The solution to equation (24)

It is easy to show that if H(w) is a solution to eqn

(24), then:
Hi(w) = H(w) exp(sw) (32)
(where s is a complex) is also a solution,

Consider first s pure imaginary énd equal to jT. Call
h(t) and hj(t) the inverse transforms of H(w) and Hj(w), respec-
tively. Eqn (32) indicates that if h(t) 1is a solution, then any

time-shifted version of it: hj(t) = h(t+T) is also a solution.

All viable solutions for eqn (24) must provide real
functions when inverse transforming H(w) or Hj(w) into the time
domain. For this reason, | H(w)| and | Hl(wﬂ are both even. This
would not be the case if s were a complex (a+jT) with a#0 however,
and for this reason, all non pure imaginary values of s should be
rejected. This is so because 1if |exp[(a+jT)w]| = exp(aw) is multi

plied by an even| H(w)l, then exp(aw). | H(wﬂ is not even.

The uncertainty with respect to the time origin of h(t)
is in fact inherent to the chromatographic problem, and is equiva-
lent to the indetermination of the retention time tj in g(t,7]).
Because the calibration is performed with narrowly distributed
polymers instead of monodisperse, the normal practice is to asso-
ciate the retention time T to some measure of central tendency of
the corresponding distribution., Similarly, the time origin of h(t)

may for example be chosen as the mean value of that curve. In this
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case, 1t can be shown that the application of the so defined
spreading in eqn (25) will generate a corrected chromatogram u(t)
with its mean coincident with that of z(t). Another possibility is
to assign t=0 at the maximum (mode) of h(t). This selection 1is
intuitively appealing because in this manner the hypothetical im-
pulse associated with h(t) is assumed to occur at the instant in

time when the polymer concentration is at its maximum.

We shall now derive a formula that is based on eqn (24),
and allows the calculation of H(w) from the knowledge of B(w)

only. Consider the identity:

pIg) LW
H (2) HA( )

Eod

H(w) = H(w) « ——— vee (33)
H2(H) ()
2 4
[w¥y]h
co 21
Hw) = T ——m——— (34)
! 1=0 [HLJL_J](21+1)
141

But from eqns (22) and (24), one may write:

[H(W_)](zi)

LANTEN 2!
[3(21)] [H(_!__J](zi+1)
pi+1

(1 =0,1,2,...) (35)

Replacing eqn (35) into eqn (34) one obtains:

Hw) = 1

[B(W_i]](zi) (36)
1 2

0

Eqn (36) provides the basis for the numerical solution
of H(w). It may be shown that if H(w) is infinitely differentiable
at w=0, the residual obtained when truncating the infinite product

in eqn (34) at a finite value of i, will become arbitrarily small
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as 1 + =, For this reason, a truncated version of eqn (36) may be

used with satisfactory results.

The proposed method

The proposed technique involves narrowly distributed

standards and may be summarized as follows:

a)

b)

c)

d)

e)

£)

g)

h)

i)

k)

Find the chromatograms without columns f(t) and f.(t).
Find the chromatograms with columns z(t) and zp(t).
Find the spreading due to the pump hp(t), through eqn (12).

Obtain the corrected first recycle chromatogram z.(t), through
eqn (17). Note that an accurate determination of the dead time

d is not required [see f) below].
Obtain B(w) through eqn (22) or eqn (23).

Adjust B(0) = 1 and b = O. This operation makes unnecessary the
exact positioning of all intermediate curves intervening in the

calculation of b(t).
Solve for H(w) through eqn (36).

Find h(t) by inverse transformation of H(w), adopting the time
origin at some measure of central tendency of the former func-

tion.
Solve for u(t) with eqn (2).

Assign T at some measure of central tendency of u(t).
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EXAMPLE OF APPLICATION

Consider the calibration of a WATERS Ass. ALC/GPC 244
size exclusion chromatograph, fitted with the following set of
u-styragel columns: 500, 1000, 10000, 100000 and 1000000 A. The
carrier solvent was tetrahydrofurane (THF) at 1 ml/min, A UV-visi
ble absorbance detector set at 254 nm was utilized. A polystyrene
standard of a nominal weight average molecular weight Mw=9000 was
analyzed. The chromatograph was linked to a Digital Minc 11 pro-
cess computer for the data acquisition and baseline correction.
Via floppy disks, the baseline-corrected chromatograms were trans-
fered to a VAX 11/780 computer for the calculation of h(t) and
u(t). The deconvolutions were carried out following the technique
described in [7]. The forward and inverse discrete Fourier trans-—
forms were solved numerically through a fast Fourier transform

algorithm. All computer programs were written in FORTRAN 77.

Fig 2 shows the required data, i.e.: the chromatograms
obtained with and without the columns after discretization, nor-
malization and baseline correction. The time axis 1s scaled in
computer sampling instant numbers, with a sampling period of 7

secs.

The breadth of f(t) is very small compared to that of
fr(t). For this reason, the spreading hy(t) was neglected, and the
pump spreading hp(t) straightly adopted as a conveniently shifted
version of the first recycle chromatogram f,(t), with t=0 assigned

at 1ts maximum.
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f(t)
015}

010}

“ fr(t)

005¢ z(t)
z(t)
000 bl HT _—— P N | 1
0 50 360 400 850 900 t

FIGURE 2: Basic required data for the application of the proposed
method, i.e.: the baseline corrected and normalized
chromatograms f(t), f.(t), z(t) and z,.(t).

Fig 3 shows z,(t) and its deconvoluted version z.(t). A
scaled version of z,(t): 2 z,(2t-d) is shown in Fig 3 superimposed
with z(t). [Note that 2 zc(Zt) would appear to the right of z(t)].
Then, b(t) is obtained by deconvolution, and represented with zero
mean in Fig 3. Because z(t) and 2 z.(2t-d) are very similar to
each other, this operation 1is particularly ill-conditioned, and

therefore a robust deconvolution method must be employed.

B(w) was obtained by transformation of b(t), and H(w)
calculated by application of eqn (36). The moduli of B(w) and H(w)

are represented in Fig 4.
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FIGURE 3: In the right hand side, z,(t) is compared with its de~
convoluted version zc(t). Then, a scaled version of
z.(t) 1is compared to z(t) (center figure). These last
two curves provide the means of obtaining b(t) (left
curves).

50 w

FIGURE 4: Modull of B(w) and H(w).
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015}
‘ h(t)
010}
u(t)
005} [1/2 u(t/z)]* h(t) « h(t)
2(1) ," zc(g/\<
000 o 850 900

-20 O 20 360

FIGURE 5: Illustrates the obtained h(t), the resulting u(t) and
the validation check.

The spreading h(t) was obtained by inverse transforma-
tion of H(w), and the time origin specified at its maximum (see
Fig 5). Through eqn (25), u(t) can be calculated. This corrected
chromatogram is also represented in Fig 5, and the time to its ma-

ximum utilized to estimate the associated retention time t=t1).

Finally, the calculations may be verified as follows.
From eqn (16), the corrected first recycle chromatogram zc(t)
should be equal to the resultant of convoluting twice a scaled
version of the estimated input u(t) with the spreading h(t). The
sald comparison is shown in the right hand side of Fig 5, and con-

firms the validity of the proposed technique.
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g (t,7)}

015+
T,=376 (M,=9000)

T3= 390 (M,=3800)

o0t \/

L T,= 358 (M,,=19200)
005
000

300 400 ¢
T T2T3

FIGURE 6: g(t,14), (1 = 1,2,3) for the three analyzed standards.

The procedure was repeated with two other polystyrene
standards of Mw=3800 and 19200. The three resulting calibrations

are represented in Fig 6.

DISCUSSION

This paper has presented a novel recycle technique for
the spreading calibration in SEC. Its main advantage is that no 'a
priori' assumptions with regards to the shapes of u(t) or h(t) are

necessary.
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Strictly speaking, the developed approach is valid only
with continuous time functions and continuous Fourier transforms.
The problem must be solved numerically through discrete approxima-
tions however, and for this reason some care must be taken on how

to perform the operations.

The correction for instrumental broadening of the chro-
matograms obtained for each calibration standard should be prior
to the calibration of the time axis in terms of molecular weights,
This is so because the elution time of the arithmetic mean of u(t)
should be made to correspond with the weight average molecular
weight of the analyzed standard; or the elution time of the har-
monic mean of u(t) made to correspond with 1ts number average

molecular weight,

If the proposed technique is applied to several cali-
bration standards, then a set of h(t) functions with their corre-
sponding retention times is obtained. This information provides
the basis for the obtention of the non-uniform spreading g(t,t).
The determination of this function, and its further use in rela-
tion to the more general correction of eqn (1), will be the sub-

ject of a future communication.

The key tool for the numerical solution to the proposed
problem is provided by eqns (22) and (36). These expressions allow
the obtention of h(t) based on the measured chromatogram and on a
corrected version of the first recycle chromatogram. In the given

procedure, at least two deconvolutions must be performed, and some
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of these operations are particularly ill-conditioned. In such

cases, the use of a robust numerical method is essential.
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